

DPP – 3 (Capacitor)

Video Solution on Website :- https://physicsaholics.com/home/courseDetails/103

Video Solution on YouTube:-

https://youtu.be/jrt2B_rC_fA

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/63

Q 1. In figure, there is a four way key at the middle. If key is thrown from situation BD to AD, then how much charge will flow through point 0?

Q 2. Two capacitors of 2 μF and 3 μF are charged to 150 volt and 120 volt respectively. The plates of capacitor are connected as shown in the figure. A discharged capacitor of capacity 1.5μF falls to the free ends of the wire. Then

- (a) charge on the 1.5 μ F capacitor is 180 μ C
- (b) charge on the 2μ F capacitor is 120μ C
- (c) positive charge flows through A from right to left.
- (d) positive charge flows through A from left to right.
- Q 3. In the circuit shown in figure charge stored in the capacitor of capacity 5 μ F is:

Q 4. Five conducting plates are placed parallel to each other. Separation between them is d and area of each plate is A. Plate number 1, 2 and 3 are connected with each other and at the same time through a cell of emf E. The charge on plate number 1 is:

Q 5. In the circuit shown, each capacitor has a capacitance C. The emf of the cell is ξ. If the switch S is closed,

- (a) some charge will flow out of the positive terminal of the cell
- (b) some charge will enter the positive terminal of the cell
- (c) the amount of charge flowing through the cell will be C ξ .
- (d) the amount of charge flowing through the cell will be $\frac{4}{3}$ C ξ .

COMPREHENSION (Q.6 TO Q.9)

Q 6. What is the potential difference V_{ab} ?

(a) 4.2 V	(b) 5.2 V
(c) 6.2 V	(d) 7.2 V

- Q 7. Now the key *S* is closed. What is the potential of point *a*? (a) 9.2 V (b) 9.4 V (c) 9.6 V (d) 7.8 V
- Q 9. The charge on capacitor 5 μ F is (a) 96 μ C (b) 98 μ C (c) 94 μ C (d) 92 μ C
- Q 10. What amount of charge (in coulomb) will be supplied by cell shown in figure after the switch Sw is shifted from position 1 to position 2? Given C = 1F, $C_0 = 4F$ and $\varepsilon = 12V$

SW

£

С

Q 11. A capacitor of capacitance C_0 is charged to a potential V_0 and then isolated. A small uncharged capacitor C is then charged from C_0 , discharged and charged again; the process being repeated n times. Due to this, potential of the larger capacitor is decreased to V. Value of C is -

2

- (a) $C_0 (V_0 / V)^{1/n}$ (b) $C_0 (V_0 / V)^{1/n} 1$ (c) $C_0 ((V_0 / V) 1)^n$ (d) $C_0 [(\frac{v}{v_0})^n + 1]$
- Q 12. What charges will flow after the shorting of the switch Sw in the circuit illustrated in Fig. through section 1 and 2 in the directions indicated by the arrows ? Given $C_1 = C_2 = 2 \mu F$ and E = 1 V.

- (a) $2\mu C$, $1\mu C$
- (b) $2\mu C$, $2\mu C$

⁽c) $-2\mu C$, $2\mu C$

 \land

(d) $2\mu C$, $-1\mu C$

Answer Key

Q.1 c	Q.2 a, b, c	Q.3 d	Q.4_d	Q.5 a, d
Q.6 a	Q.7 c	Q.8 b	Q.9 d	Q.10 8
Q.11 b	Q.12 d		200	CS